Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation.

نویسندگان

  • Soraya Taleb
  • Raffaella Cancello
  • Karine Clément
  • Daniele Lacasa
چکیده

We previously showed that the cysteine protease cathepsin S (CTSS), known to degrade several components of the extracellular matrix (ECM), is produced by human adipose cells and increased in obesity. Because ECM remodeling is a key process associated with adipogenesis, this prompted us to assess the potential role of CTSS to promote preadipocyte differentiation. Kinetic studies in primary human preadipocytes revealed a modest increase in CTSS gene expression and secretion at the end of differentiation. CTSS activity was maximal in preadipocyte culture medium but decreased thereafter, fitting with increased release of the CTSS endogenous inhibitor, cystatin C, during differentiation. Inhibition of CTSS activity by an exogenous-specific inhibitor added along the differentiation, resulted in a 2-fold reduction of lipid content and expression of adipocyte markers in differentiated cells. Conversely, the treatment of preadipocytes with human recombinant CTSS increased adipogenesis. Moreover, CTSS supplementation in preadipocyte media markedly reduced the fibronectin network, a key preadipocyte-ECM component, the decrease of which is required for adipogenesis. Using immunohistochemistry on serial sections of adipose tissue of obese subjects, we showed that adipose cells staining positive for CTSS are mainly located in the vicinity of fibrosis regions containing fibronectin. Herein we propose that CTSS may promote human adipogenesis, at least in part, by degrading fibronectin in the early steps of differentiation. Taken together, these results indicate that CTSS released locally by preadipocytes promotes adipogenesis, suggesting a possible contribution of this protease to fat mass expansion in obesity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction.

BACKGROUND Extracellular matrix (ECM) turnover plays an important role in left ventricular (LV) remodelling following myocardial infarction (MI). Cysteinyl cathepsins contribute to ECM catabolism in arterial diseases, suggesting their participation in post-MI remodelling. METHODS AND RESULTS Left anterior descending artery ligation-induced MI in mice showed increased expression and activity o...

متن کامل

Genetic, Endocrine and Paracrine/Autocrine Aspects of Porcine Adipocyte Differentiation

An extracellular matrix surface enhances s-v cell proliferation and inhibits preadipocyte differentiation. Dexamethasone, however, can induce preadipocyte differentiation in cultures in ECM dishes. The mechanism(s) of the ECM inhibitory influence need to be elucidated. TGF-P inhibits and IGF-1 enhances preadipocyte differentiation but both growth factors enhance s-v cell profliferation. The fun...

متن کامل

Pref-1, a Gatekeeper of Adipogenesis

Preadipocyte factor 1 (Pref-1, also called Dlk1/FA1) is a molecular gatekeeper of adipogenesis which acts by maintaining the preadipocyte state and preventing adipocyte differentiation. Pref-1 is made as an epidermal growth factor-like repeat containing transmembrane protein, and is cleaved by TNFα-converting enzyme (TACE) to generate a soluble form, which acts as an autocrine/paracrine factor....

متن کامل

Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation.

Factor XIII-A (FXIII-A) transglutaminase (TG) was recently identified as a potential causative obesity gene in human white adipose tissue (WAT). Here, we have examined the role of TG activity and the role of protein crosslinking in adipogenesis. Mouse WAT and preadipocytes showed abundant TG activity arising from FXIII-A. FXIII-A was localized to the cell surface and acted as a negative regulat...

متن کامل

Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 147 10  شماره 

صفحات  -

تاریخ انتشار 2006